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ABSTRACT

Let XI,...,Xn be i.i.d. samples drawn from a d-dimensional distribution

with density f. Partition the space Rd into a union of disjoint intervals
, {£ IZX ,  ,n)}wit th fom I f () ,xd)
I= I(Z'Xi.*qXn)} with the form I,= = ,...,x d - < a < xci)

< b i< W, i = 1,...%d1. Define the data-based histogram estimate of f(x)

based on this partition as

f n(x) = The number of XI,...,Xn falling into I

n times the volume of IV for x e If,  t = 1,2,...

For given constant r > 1 we obtain the sufficient condition for

nlim Rd(X)f(x)lIrdx = 0. The results give substantial improvements upon

the existing results.

AMS 1980 subject classifications: Primary 62F10; secondary 62H99.

Key words and phrases: Data-based, density estimator, empirical

distribution, histogram.
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. f n(x) = The number of Xi,...,X n falling intoI;
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1. INTRODUCTION AND SUMMARY

Suppose that XI,...,X n are i.iod. samples of a d-dimensional

random vector X. Throughout this paper, we shall denote by F the

distribution of X, f the probability density function of X,

x n = (XI,'"Xn), and Fn the empirical distribution of Xn .

Let fn = fn(x) - f n(x;Xn) be an estimate of f based on Xno

For any constant r > 1, define

m nr -mnr(Xn)= flfn(x)-f(x)irdx. (1)
';-'Q" f ; d" 1/r

Here and in the sequel f means mnr be called the L -norm ofmnr to becle h r-rmo

;,. f - f. is a much - studied criterion in evaluating the performance of a

density estimator. Quite a number of works have been done on the

problem of convergence (to zero) of mnr as the sample size n tends to

infinity. We say that fn is a L r-norm consistent estimator of f if

mnr - 0 as n -- in some sense.

For the kernel estimator

S x) = (nh,) " I  
INXp(M

SSPEm

where the kernel is assumed to be a probability density, Devroye [8]

proved that the necessary and sufficient conditions for
fFor

..
lim mnl 0 0, a.so (2)

. # in-.-

are that hn -,- 0, n d Bai and Chen [3] solved the general case of, n n . ..

r > 1, proving that the necessary and sufficient conditions for

Av. .  0 rCi p

% %, ii

•r •!
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lim mnr = 0, aos. for some r > 1 (3)

are that

h - 0, nhd ffr(x)dx , fKr(u)du< .
F n n

In the case of k -nearest neighbor estimator proposed by Loftsgarden
-- n

and Quesenberry [10], Zhao Yue [12] proved that a sufficient condition

for (3) in case of r > 1 is that

kn/n - 0, k n /logn , r(x)dx < C (4)

while the first and last in (4), and also that kn , are necessary for
'Sn

'S the truth of (3) (r > 1).

Another important type of density-estimator is the histogram -

- ordinary histogram and data-based histogram. In ordinary histogram,

the partitioning of range space of X,Rd, is done prior to the drawing

of samples Xn. For this case, Abou-Jaoude [1], [2] (see also

Devroye and Gy6rfi [9], pp.19-23) obtained the necessary and sufficient

conditions (imposed on the partition) for the truth of (2). Chen and

Zhao [7] solved the general case of r > 1, for the particular partition

Rd = '{x = (x( a)  + kih < xk < < a. + (ki+1)h

k1  ". k -=i

1 < i <d}.

Data-based histogram differs from the ordinary one in that the

partition of space Rd defining the density estimate depends on the

n nobservations X Thus, after obtaining X , we make a partition of

R :

--{I(Z,Xn):Z = 1,2,}.~n

I(ZXn) =Rd. I(j,Xn) n I(kXn) = when j $ k).
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In this paper we consider only the case that I(e,Xn), = 1,2

are intervals in Rd of the form

[al'bl)X[a2 b2 )X ... X[ad'bd)c <ai < b - -

•1. - . < b. < w, 1< i < d.

For each x e Rd, denote by I n(x) the unique interval in 0n containing x,

and by X(I (X)) the Lebesque measure of In (x). The data-based histogram

n nestimate fn' based on the partition n i defined by

f n(x) _ F n(I n(x))/x(In(x)). (5)

For this estimate, the problem of L r-norm consistency is much more

complicated as compared with the ordinary histogram case. To begin with,

for each positive integer n and positive constant t, denote by Cnt

the number of intervals in on = {I(,'Xn)} fulfiling the condition

x= ,...,x ( d ) ) : Ix(i) <t, < i <_d)

-d
and denote by D(A) the diameter for any set A Rd . Chen and Rubin

[4] proved that

lim mnl = 0, in probability (6)

under three conditions, two of them are:

lim D(In (x)) = 0, in probability, for x e Rd , a.e.x (7)Hn
in probability, for any t > 0 (8)

lim C nt/ = 0, d > 1.

while the third one is of a rather complicated nature. Chen and Zhao

[6] studied the strong consistency for the case of general d, proving
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the truth of (2) under the conditions:

lim D(I n(x)) 0 0, a.s., for x e Rd, a.e.X (7*)

lim Cntlogn/n = 0, a.s., for any t > 0 (8*)

while Chen and Wang [5] obtained analogous result for this problem.

By comparing (8) and (8*) we see that although in case d > 1 (8*)

is an improvement of (8), but in case d = 1, in achieving strong

Comparing the above two results, we see that in case d > 1 we have

not only made the improvement by establishing a.s. convergence instead of

convergence in probability, but also succeeded in some sense in weakening

the conditions required, since (8*) requires a lower rate of convergence

to zero than (8) - Of course, strictly speaking, (8) and (8*) are

mutually exclusive. In case d = 1, in achieving strong consistency, we

pay a price by requiring that cnt is of the order O(n/logn) instead of

O(n). Motivated by the works of Devroye [8], Bai and Chen [3] and Chen

and Zhao [7], we expect that the order O(n) should be sufficient. In

section 3, we shall prove that this is indeed the case:

THEOREM 1. Suppose that fn is defined by (5), then (2) is true

if (7*) and the following condition (9) are both true:

lim Cnt/n = 0, a.s. for any t > 0 (9)

The general case of r > I is considered in section 4. To formulate

our result, for any interval I = [al,bl)X...X[ad,bd) belonging to the

partition n, write a(I) for dmin (ba i). Also, for any t > 0, write
p i n t a() f <i<d

= { = (( )  (d) ( )i = I , }
Qt (,(x ... , ): < < t , ,..
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THEOREM 2. Suppose that fn is defined by (5), then (3) is true

if the following three conditions are satisfied:

f fr(x)dx < - (10)

sup{0(I):I e Dn , i n 0}+O aos. for any t > 0, (11)

n(inf a(I))d -* C as. (12)
n

The basic tool in our argument is an inequality establishing

dd
. the exponential bound for the deviation between theoretical and

*empirical distributions over a class of partitions of Rd. The

inequality is of independent interest and is the subject of section 2.

4'k

S,%A.
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2. AN INEQUALITY

Suppose that p is a probability measure on ed - the c- field of

all Borel sets in Rd. Let ,. . ... be 1.i.d. random vectors with

a common probability distribution V, and vn be the empirical distribu-

tion of Xl,...,X n.

We call o - {AI,...,AkI a partition of Rd, if AI,..., Ak are

disjoint intervals of the form

[al,bl)X...X[ad,bd) : - <a I <b <, I = oo

and 1 A = Rd. For fixed positive integer k, denote by F -Fk the
1=1

collection of all such partitions, and define

D - D (Xn) sup{LA e tn(A)-v(A)J : s e F}

It can easily be seen that there exists a countable subset {4i, i = 1, 2,...}

CF, such that Dn = sup{zAeDi lun(A) - i(A)J: i = 1,2,...), and {,i} is indepen-

dent of Xn. This shows that Dn is a random variable. We are now going

to establish the following exponential bound for D
n

THEOREM A. Given E e(O,1), we have

SP(D ) < 6 exp(-ne 2- )

when n >max(k,OOlog6/e2), and (.)log(-en) < E22-9(d+I)-I.

In proving the theorem, we borrow some idea from a work of Vapnik

and Chervonenkis [11]. We also note that Theorem A extends a work

of Devroye [8], which we formulate below as a lerrwa:

LEMMA 1 (Devroye [8]) Suppose that Rd = Ai A e

pj!A .~ .,a AA
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iIs 1...,k. and A1i fAj 0 when i tJ. Then for given c > 0

we have

P( I Ip(A)-"(A)I >_ e) <_ 3exp(-n2/25), when k/n < E /20ni= i

The following simple fact is also needed in the proof:

LEMMA 2. Let qi, xi, i = 1,...,k, be positive numbers.

Write a= 1 x s b= =xiqi . We have

k Alq I  b bk x i qi > (L)b
qI a1=1 -a

and the equality holds if and only if ql = "" =q

The proof is easy and therefore omitted.

Proof of the Theorem.
(x ) x2n (X X'n 1 th

Write x(n) = (Xn+l, " , 2 X•n' 2n = ( n

empirical measure of X(n), and

D n(Xn' ) = lAe,0un(A)-p(A)l

D( (X(n),) - ZAeIVn(A)-v(A)I

Gn(X2n,) = Aeshun(A)-Vn(A)l

Gn  n(X2n) = sup{Gn(X2n,,)" :e F}

n nn

Since {GO > 0{G ( > L)O E:{Dn({) (nD < E/2}

and {D ( i)" i = 1,2,...}, {D(,i): i = 1,2,...} are independent, it is

well known that
P(G > .) >inf P(D*((,i) < c/2)P( i'l{Dn((i) > C)

1%1 :inf P(D*(,Di) < c/2)P(Dn > C)

N

.5r
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Suppose that n satisfies the conditions indicated in Theorem A, then

k/n < c /80, and by Lemma I we have, simultaneously for all Xn:

p(D*(X(n),) _ne2

n/21x) < 3exp( /100) < 1/2, 1 = 1,2,...

Therefore, P(Dn( i) < /2, i = 1,2,..., and

P(G > E) > I (D > )(3

From (13), it is seen that the proof of Theorem A reduces to the problem

of finding an upper bound for P(Gn > c/2). For this purpose, denote by T

2nna permutation (jl,j 2,...,j2n ) of (1,2,...,2n), so that TX2n = (X ,X. ...,X.

Further, denote by P(T) and v the empirical measures generated by

S(X ...,X ) and (X 1 ,...,X ), respectively. Then it Is readily

seen that

P(G " > 2= J2nd (21T1 "OSI(,gr0A1) V(T (A) _ O(T)* (A)l > c1dP

r JRnd p-j- ~ I~e (T)' (A)-v ~(A)I > c~.dP (14)

where the summation r is taken over all (2n)i permutations of
T

(.1,,...,2n), and P =
.- ' ." 2n,

Now fix X and denote by U the set with elements XI ,X2

Each f * F induces a partition of the set U. Denote by m n(U) the

number of different partitions induced by all t e F. We have'-w

Sn(U ) < ( 2n+k- ) < ( 3n)d <( (3) )d (3e)kd (15)

n - - k 1 1 - -
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Let F be a subset of F having m n(U) members, such that if

e F i : 1,2 and P  1 2' thenl and D2 induce different partitions1

of U. We have

1 I2) sup I 1 (A)- (A)l

T AeP
1 Su J(T)

(A = IE)
'"" T p A0 n w2n 4

(2n) T W, Aeo 2

1 I 2hT)(A)_A2n)l >

n T A T) (1))u2
n.< M (USU I{ 1P T (A l > }

n P F T T A6, n4(6

Fix D = {AI,...,Ak} F. Denote by YIO..,Yn a random sample taken from

U without replacement, and {Zi, i > 1} be a sequence of random samples

taken from U with replacement. Write P(.) = P(.1x2n), E(.)

= E(. Ix2 n), and

I = V 2n (Adt N), 2n =, , ...

= k n k n
Vn 2 l( 1 (Yi0 )-nP.I, Wn I I (ZieA )-np.i (17)

n & i i=1 z Z=1 =1

Then we have

17 E If (T)(A) (A) >
aK(2n]. T Ae n 2n

w," k 1 n PV

00. I- I(YieA) - pI >')} = n > n/4) (18)!O.n
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Now we proceed to show that

Efexp(tV n)} < (4re 1/6 n/k) k2E{exp(tW n ) (19)

for any t > 0. In fact,

E exp(tW n)

pI n k k (0
P, 1..pk expft X In.-np.1}, (0

where the summation El is taken over all integer-valued vectors

(nl..on k ) satisfying

k
nj 1  0O,...,n k L>0 and n n.

t= 1

In the same way, we have

E{exp(tV ) 1(N1)..(Nk)(2n)lylexpft kn
nl fl nk n n-np.1}

n!__n__ 1 n kk

EIC(n n pl ... exp{t I In -np,,I). (21)

Here, as usual, we put (n) 0 for m> n. Also,m

= ' n k (N.!) Nn)

n!(2n )n ,[ N!.-N ) ,N. I-n!)

where ITis taken over all j's satisfying N n n. and TI is taken
(1) 3 3 (II)

over all j's satisfying 0 < n.i < N..* Using Stirling's formula

n ~ ~ n3 ~ /1n

VITnne-<n T-T
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k
A and the fact that ;l nj = n, we get

SC(nl,...,n k)

-n-1/2n+1/12 k/2 k N .- n. -(N.-n.)-1/2
. < 2-n e2 (2Tr) exp(k/12- n-) ii (N "

. .'.j=1l (II)

< 2-- /2(2 )k/2(k+l)/12 N (Njnj) I VN. (22)
< 2l je j3 H

. ii and the summation : appearing below, are taken over all
(III)' (III)

j's satisfying 0< n 3 < N. . Putting qi= (N.-n )/Ni, . = N. in

Lemma 2, we get

0 a . E N. < 2n,
a = I ) J  (Il J -

kxjqj A (Nj-n)= (Nj-n)= n,

-.. = z) z) :

and

N.-n. N.-n = I jqj b n

(nI)( N- ) j (IlI) q > (b/a) > 2- . (23)

On the other hand,

k 1 k k/2 k/2
T.i v'F< ( N.) =(2n/k) . (24)

j=l J j=1 J

By (22) - (24),

C(nl,...,nk) < 2"/e (4nn/k) < (4nn/k) e (25)

and (19) follows from (20), (21) and (25).

Let N be a Poisson random variable, E(N) = n, and N,(YI,...,Yn,

S N
ZI, 2,...) are independent. Since Z I(Zi . Az), t = 1,...,k, are

i =1

0O.
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independent Poisson variables with mean npl,..,n Pk respectively, it

follows from (19) that for any t >0,

P{V n> nE:/4)

< P{(N-n) > ne/ 8 } + e-tlE/4 i{etVnI(IN-ni < nE/8)}

= P{IN-ni > n/8} + e -tnE/4Ee V nP{!Nni < n/8}

<P{iN-nl > ne/8) + (47~e 1/6n/ k) k/2 e-tnl:/4 etWlP{IN-nI < nc/8}

= {IN-nl > nc/8} + (4,l'/)k2etn/ ftn(Nn < n/)

From the independence mentioned above and

*etWnI(IN-nl < ne/8) < exp{t I I I(Z eAf) nP1+ n/}

* it follows that

P{V > ne/4}

< {IN-nI > ne/8}

Sk. N
+ (4rre 1/6n/k) k/2 - i 1 E{exp(tjZ i I(eAe) - nPIj)}. (26)

t=1 i=1

Now suppose that V is a Poisson variable and EV = .From

e-t + t < e t - t for t > 0, it follows that

IE(etlv-xl) < E{e(V-' + tVXl

=expfx(e t-1- t)} + exp1:(e&t-+t)} < 2exp{A(e t- 1t)}.

So we have

P{IV-xl > XF}< E{exp(tIV-xI-txe)}
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2expftx + LA- -t}

Take t =log(l+c), we get

P{IV-AI > e 2x{~-lclglc)

2exp{-Xc /(2+2c)) < 2exp(-xc2 /4)

for ce(O,1). Repeat this argument and take t =log(1+E/8), by (26)

we have

P{n n/41

2p(n2  1/6 k2tc8k t-
< ep-c/256) + (4ne n/k)k'tn/ e- {2exp(nP,(e -1-t))

* Z-= 1

<2exp(-nc 2  1/ //256) + (47e 16n/k) k2 2kexp{n(e t-l-t-tE/8)}

< 2exp(-nc 2 ~/256) +(167e 6nk k/2 x(n2/56

< 3(167re 16n/K) k/ exp(- ne 2/256). (27)

From (14) - (18) and (27), it follows that

P{G n> c/21 < 3(3en/k) kd (161Tel/ 6n/k) k/2exp(-nc2/256)

-3 exp{-nc 2/256 + kd log (3en/k) + .klog(16ffe 1/n/k)}.
2/

Under the conditions of Theorem A, n/k > 16 e 1 /(9e ) and

2 9
k(d+1)log(3en/k) < ne /2 . Hence,

*PIG I > c/21 < 3 exp{-nc 2/256 + k(d+1)log(3en/k)}

< 3 exp{-nc /2 1.

From this and (13), Theorem A follows.

II V10 V 1 1111
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3. PROOF OF THEOREM 1

Define

fn(xx)= (u)du/x(In(X)). (28)

It is enough to show that for any t > 0,

.'lim - n(X)Idx = 0 a.s. (29)

n-,. ftf(x)

and

l' tmfn(X) -d ( x = o a.s. (30)'p

For any E > 0, we can find a function g(x) > 0 which is continuous

on R and has a bounded support, such that Jlf-gldx < e. Define

g nx = n(x)g(u)du/x(In(x)).

Then

SQt If- Idx i-gldx+f-l 9d+f, gngdx
t Jfn~d _ fi n-tn

< 2JIf-gldx+fQ Ign-gdx

<p 2 c , tn-gdx. (31)
* t

By (7*), there exists a set BOC.(Rd)0 such that P(Bo) = 0 and for

W 4 (Xl,X 2 ,...) e B0 we have limn- D(I (X)) = 0 for x e Rd, a.e.x, and

in turn it follows that limn- 5n (x) g(x) for x e Rd a.e.X.

By the dominated convergence theorem,
:,m

' -n Q n (x)-g(x) dx = 0 a.s., (32)

and (29) follows from (31) and (32).

O4
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From (9) it can be shown that there exists a sequence {6n} of

positive numbers such that lim n_ - n = 0 and
lir

nt/F Innl. = 0 a.s.,

where [n6n] denotes the integer part of n6n.  For any Ee(0,1), there exists

a set B1_/2c (Rd 00 such that P(BI1 c/2) > 1 - /2 and

lim Cnt/[nn = 0 uniformly for (X1,X2 ...) e Bl 2

So there exists a positive integer N such that

Cnt < [n n], for n > N and (XI,X2,...) e B1't.n"12-1- e/2.

-Now we recall D (X n) {I(Z,Xn) 1,2,...} is theNow we recall n n(  =' = "

partition of Rd which defines the data-based histogram fn. It is easy

to see that we can find k < 3d Cnt and P e Fk such that

{I : I e (,Ifn Qt # = {I I enD Ifn Qt 0 }.

Hence, for (X1,X2,...) e BI1-/2, n > N and k 3d [n6n ], we have

' : "t if n (X) - i n (x) Idx < z I e' n, O i Q IF Fn (I) -F(1)I

su <_ E Z~ (A) - F(A)l Dn  (33)

Since k/n = 3 d[n6 n]/n < 3 d 0 as n ,from Theorem A, we have

lim D 0 a.s (34)

eBy (33) and (34), there exists a set B n f(Rod such that BA eB

n - ,

P(BI 1 ) > 1 - E and

[1

'a, oq V
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lim Q ifn(X) . n (x)Idx = 0 uniformly for (X,X2 ...) e B_n- f t nn 2'

Since E >0 is arbitrarily given, (30) is proved, and the proof of

I Theorem 1 is completed.

,

5d'..

.5
5-.'

Si.
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4. PROOF OF THEOREM 2

Define fn (x) as before by (28). Find a nonnegative function g,

continuous everywhere on Rd and with a bounded support, such that
Jf-gjIrdx < r. Put

gn(x) = in (x)g(u)du/x(In(x)).

.Then

( rfrdx)I/r < (fIf-gI r dx)I1/r + (Jlf -gn rdx)I/r + (ign-gjrdx) 1 / r

L 2( flf_glrdx)l/r + (Ilgnglrdx)l/r

.• < 2e + (JIgn-g rdx)l/r. (35)

By (11), for any x e Rd, we have

_ D(In (x)) - 0 a.s.

There exists a set Bo-(Rd)co such that P(B) 0 and for00 anfo

9(X,X2,...) B0 we have lim n-D(I n (x)) = 0 for x e Rd , a.e.x,

and in turn it follows that limn_.gn(x) = g(x) for x e Rd a.e.x. By

the dominated convergence theorem,

flim -I dx 0 for we B(36)•n-i'0 fn- g rd = 0 (36

By (35) and (36), we have

lia flf(x)-f (x)jdx = 0 a.s. (37)• n-K n

-. Now we proceed to prove that

J-fn-fnIrdx : n F(I) - F(Idi r/X(IZ)r-1 0 O, a.s. (38)
I e(

_0,r
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Put H : infIen a(I). Since nHd _" c a.s., it can be shown that there

exists a sequence Cn - such that limn nHdcd = a.s.. Without
n n- n

loss of generality, we can assume that C /n + 0. Take h = h = C ,n- n n

then h - 0, nhd -* and H/h -9 a.s.n n n
Construct a partition of Rd into disjoint finite intervals, say

n= {A1 ,A2 ...}, where A ms are all cubes with the same edge length h.

Define

"n (x) = Fn(Am )/h for x e Am, m = 1,2,...

*and

n (x) = F(A m)/hd for x e A m ,  m =

By the theorem of [7],

2n-: fIn (x ) - f( x ) Irdx = 0. a.s.

An argument similar to that leading to (37) gives

1im Jlcn(x)_f(x)Irdx = 0.

So we have

JI n(X)-Cn(X)I r d x  A Z tFn (Am)-F( Am)Ir/(hd 
r - 1

m n
- 0 a.s. as n (39)

~For I e%  denote by HI ,

For e .. ,H the lengths of the edges of I., and

write

Mt =  (M : A m e ' , Am A I }9

Z = {M : A m A 1I n , AI 0 z  0). (40)

I

€~
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Since H/hn -- a.s., we can find B.C(R d)c such that P(B) = 0

and H/hn - - for w e B.. In the sequel we always keep w T B*.

Thus, for n large, H i > 2h for all i and Z. We have

d d
T1 (H it/h -2)< #(Mz) < T (Hit/h), (41)

Si =1 -- i=1

w .and
" d d

AU #(M1) < ii (Hi /h +2)- nI (H. h-2)
i=1 i=1

-d d d
,< X(th R (1+2h/Hie) - Ti (l-2h/Hit)}

i =1 i =i

< x(iYh-d{(+2h/H)d _ (12h/H)dI

S_ X(I,)C(d)h/H, 
(42)

where
C(d) = d d-1

Now, by (41) and (39) we have

-" I (#( l ) - I r /X(I r-In n (m< M) n m
. e n n

,ww < Z ~( m )  m Ir(d F()!r/()r

IIF ( - F(A )Ir/(hdr- 1 0, a.s. (43)

- 6 n mm

On the other hand, by (42) we have

An 7 n F( (leA)) - F( K (le ) )r/X(I ) r - 1

nmn M MtIZe(Dn Me me

< I, (#(Me))r-l ZIFn(I Am)- F(Ie~n)Ir/xIe)r -1"'-." VI (#(M n Z mM

I enM 
r
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_ (hC(d)H-1)r -1  IF(IAm) - F(IAm)r/(hd)r-1. (44)
I %n meMZ

For each m f, n' define

Nm = {Z: It Zn I- t n 9} (45)

Since Hit> 2h for all i and t, for any m the set

N contains at most 2d elements. By (44),m

On <- (C(d)h/H)r' I IF n(Iz ) f- t F(If-A m)Ir/(hd~ -

Amen meNm

< (C(d)h/H)r 'l Z #(N)2r-l(Fn(Am)r + F(Am)r/(hd)r-I
Ameyn

2d+r-l (C(d)h/H) r- IF (A )-F(m dr-i
_ ~ 2~~j n m A)r(m

A 4EYm n

+ 2d+r- l(C(d)h/H)r-
I 1 (2r-l+1)F( m)r/(hd)r-1

A 6'P. m n

Anl + P (46)
_n1 n2.

By (43),

im =0 a.s. (47)
n-~ n1

* By Jensen's inequality,

II

SF( m )r/ (h d)r-i 1 Ih -d fA f(x)dxlr h d

A ET' A m CTn  m

< fmfr(x)dx : rfr(x)dx,
A e
m n

which implies that

O n2 0 a.s. (48)I-n
. .....
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From (46) - (48), we obtain

~~lim :
p n  0 a.s. (49)

By (43) and (49), we have

Itfn(x) - f (x)lrdx = 0F(IZ) - F(IZlrr/,(Izr 'l

Zn
< 2r-1 (n+ n - 0 a.s.

Thus, (38) is proved, and Theorem 2 follows from (37) and (38).

%'p
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